8 research outputs found

    The Category of Matroids

    Get PDF
    The structure of the category of matroids and strong maps is investigated: it has coproducts and equalizers, but not products or coequalizers; there are functors from the categories of graphs and vector spaces, the latter being faithful; there is a functor to the category of geometric lattices, that is nearly full; there are various adjunctions and free constructions on subcategories, inducing a simplification monad; there are two orthogonal factorization systems; some, but not many, combinatorial constructions from matroid theory are functorial.Comment: 31 pages, 10 diagrams, 28 reference

    Monoidal characterisation of groupoids and connectors

    Get PDF
    We study internal structures in regular categories using monoidal methods. Groupoids in a regular Goursat category can equivalently be described as special dagger Frobenius monoids in its monoidal category of relations. Similarly, connectors can equivalently be described as Frobenius structures with a ternary multiplication. We study such ternary Frobenius structures and the relationship to binary ones, generalising that between connectors and groupoids

    Tensor topology

    Get PDF
    A subunit in a monoidal category is a subobject of the monoidal unit for which a canonical morphism is invertible. They correspond to open subsets of a base topological space in categories such as those of sheaves or Hilbert modules. We show that under mild conditions subunits endow any monoidal category with a kind of topological intuition: there are well-behaved notions of restriction, localisation, and support, even though the subunits in general only form a semilattice. We develop universal constructions completing any monoidal category to one whose subunits universally form a lattice, preframe, or frame.Comment: 44 page

    Boolean Subalgebras of Orthoalgebras

    Get PDF
    We develop a direct method to recover an orthoalgebra from its poset of Boolean subalgebras. For this a new notion of direction is introduced. Directions are also used to characterize in purely order-theoretic terms those posets that are isomorphic to the poset of Boolean subalgebras of an orthoalgebra. These posets are characterized by simple conditions defining orthodomains and the additional requirement of having enough directions. Excepting pathologies involving maximal Boolean subalgebras of four elements, it is shown that there is an equivalence between the category of orthoalgebras and the category of orthodomains with enough directions with morphisms suitably defined. Furthermore, we develop a representation of orthodomains with enough directions, and hence of orthoalgebras, as certain hypergraphs. This hypergraph approach extends the technique of Greechie diagrams and resembles projective geometry. Using such hypergraphs, every orthomodular poset can be represented by a set of points and lines where each line contains exactly three points.Comment: 43 page

    Limits in dagger categories

    Get PDF
    We develop a notion of limit for dagger categories, that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases

    Monads on Dagger Categories

    Get PDF
    The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when everything respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so-called Frobenius law. Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleisli and Frobenius-Eilenberg-Moore algebras, which again have a dagger. We characterize the Frobenius law as a coherence property between dagger and closure, and characterize strong such monads as being induced by Frobenius monoids.Comment: 28 page
    corecore